应时辉
应时辉,教授、博导,shying@shu.edu.cn
研究领域: 医学影像处理与智能分析的数学理论与方法、反问题的几何理论
教育经历与工作经历:
2017/03-至今 古天乐代言太阳集团数学系 教授
期间:2019/12-2020/12北卡罗来纳大学教堂山分校医学影像研究中心 访问学者
2011/03-2017/02 古天乐代言太阳集团数学系 副教授
期间:2016/07-2016/08 新加坡国立大学 访问学者
2015/01-2015/02 奥地利维也纳大学薛定谔研究所 访问学者
2012/01-2013/01 北卡罗来纳大学教堂山分校医学影像研究中心 博士后
2008/06-2011/02 古天乐代言太阳集团数学系 讲师
2002/09-2008/06 西安交通大学古天乐代言太阳集团数学系 理学博士
1997/09-2001/07 西安交通大学机械工程学院 工学学士
1994/09-1997/08 浙江省金华第一中学
代表性科研项目:
1. 国家重点研发计划数学与应用专项(2021YFA1003004):基于可解释深度学习的多中心/跨模态医学影像分析,2022-04至2027-03,在研,主持
2. 国家自然科学基金面上项目,11971296,大脑影像智能分析的小样本学习理论与方法研究,2020-01至2023-12,在研,主持
3. 国家自然科学基金面上项目,11471208,大脑影像标准化的优化模型与算法研究,2015-01至2018-12,已结题,主持
4. 上海市科委能力建设项目,18010500600,基于脑影像处理与智能分析的脑疾病早期诊断,2018-04至2021-03,已结题,主持
5. 国家自然科学基金青年基金项目,61005002,数据集配准问题的 Lie 群方法研究及其应用,2011-01至2013-12,已结题,主持
代表性论著:
1. X Sheng, D Xiong, S Ying*. Intrinsic semi-parametric regression model on Grassmannian manifolds with applications. Communications in Statistics - Simulation and Computation. 2022. DOI: 10.1080/03610918.2022.2112961
2. D Xiong, S Ying*, H Zhu. Intrinsic partial linear models for manifold-valued data. Information Processing and Management. 59: 102954, 2022. (中科院一区)
3. Y Zhang, S Ji, C Zou, X Zhao, S Ying, Y Gao*. Graph learning on millions of data in seconds: label propagation acceleration on graph using data distribution. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. (中科院一区)
4. S Ji, Z Zhang, S Ying, L Wang, X Zhao, Y Gao*. Kullback-Leibler Divergence Metric Learning. IEEE Transactions on Cybernetics. 52 (4):2047-2058 2022. (中科院一区)
5. Y Li, Z Zhou, S Ying, DeLISA: Deep learning based iteration scheme approximation for solving PDEs. Journal of Computational Physics. 451: 110884, 2022. (中科院一区)
6. S Feng, W Huang, L Song, S Ying*, T Zeng, Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds. Optimization Letters, 16: 2277–2297, 2022.
7. D Jin, M Yang, Z Qin, J Peng, S Ying*, A weighting method for feature dimension by semisupervised learning with entropy. IEEE Transactions on Neural Networks and Learning Systems. 2021. (中科院一区)
8. 应时辉,杨菀,杜少毅,施俊*. 基于深度学习的医学影像配准综述. 模式识别与人工智能. 34(4):287-299, 2021.
9. Z Wen, R Feng, J Liu, Y Li, S Ying*. GCSBA-Net: gabor-based and cascade squeeze bi-attention network for gland segmentation. IEEE Journal of Biomedical and Health Informatics. 25 (4):1185-1196, 2021. (中科院一区)
10. J. Shi, X. Zheng, J. Wu, Q. Zhang, S. Ying*, Quaternion Grassmann average network for learning representation of histopathological image, Pattern Recognition. 89: 67-76, 2019.
11. S. Ying, Z. Wen, J, Shi, Y. Peng*, J. Peng, H. Qiao, Manifold preserving: an intrinsic approach for semi-supervised distance metric learning, IEEE Transactions on Neural Networks and Learning Systems. 29(7): 2731-2742, 2018. (中科院一区)
12. X. Li, Y. Bai, Y. Peng, S. Du, S. Ying*, Nonlinear semi-supervised metric learning via multiple kernel and local topology. International Journal of Neural Systems. 28(2): 1750040, 2018. (中科院一区)
13. J. Shi, X. Zheng, Y. Li, Q. Zhang, S. Ying*, Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics. 22(1): 173-183, 2018. (中科院一区、高被引论文、热点论文)
14. J. Shi, J. Wu, Y. Li, Q. Zhang, S. Ying*, Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE Journal of Biomedical and Health Informatics. 21(5):1327–1337 2017. (中科院一区)
15. S. Ying, G. Wu, Q. Wang, D. Shen, Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set, NeuroImage. 84(1): 626-638, 2014. (中科院一区)
16. S. Ying*, J. Peng, S. Du, H. Qiao. A scale stretch method based on ICP for 3D data registration. IEEE Transactions on Automation Science and Engineering. 6(3): 559-565, 2009.
17. S. Ying, L. Cai, Y. Peng*, Y. Li, Geometric understanding for unsupervised subspace learning, IJCAI. 2019. (CCF A类会议)
18. S. Ying, G. Wu, Q. Wang, D. Shen, Groupwise registration via graph shrinkage on the image manifold, IEEE Conferences on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, USA, June 25-27, 2013. (CCF A类会议)
(最后更新日期:2022.11.2)
应时辉
应时辉,教授、博导,shying@shu.edu.cn
研究领域: 医学影像处理与智能分析的数学理论与方法、反问题的几何理论
教育经历与工作经历:
2017/03-至今 古天乐代言太阳集团数学系 教授
期间:2019/12-2020/12北卡罗来纳大学教堂山分校医学影像研究中心 访问学者
2011/03-2017/02 古天乐代言太阳集团数学系 副教授
期间:2016/07-2016/08 新加坡国立大学 访问学者
2015/01-2015/02 奥地利维也纳大学薛定谔研究所 访问学者
2012/01-2013/01 北卡罗来纳大学教堂山分校医学影像研究中心 博士后
2008/06-2011/02 古天乐代言太阳集团数学系 讲师
2002/09-2008/06 西安交通大学古天乐代言太阳集团数学系 理学博士
1997/09-2001/07 西安交通大学机械工程学院 工学学士
1994/09-1997/08 浙江省金华第一中学
代表性科研项目:
1. 国家重点研发计划数学与应用专项(2021YFA1003004):基于可解释深度学习的多中心/跨模态医学影像分析,2022-04至2027-03,在研,主持
2. 国家自然科学基金面上项目,11971296,大脑影像智能分析的小样本学习理论与方法研究,2020-01至2023-12,在研,主持
3. 国家自然科学基金面上项目,11471208,大脑影像标准化的优化模型与算法研究,2015-01至2018-12,已结题,主持
4. 上海市科委能力建设项目,18010500600,基于脑影像处理与智能分析的脑疾病早期诊断,2018-04至2021-03,已结题,主持
5. 国家自然科学基金青年基金项目,61005002,数据集配准问题的 Lie 群方法研究及其应用,2011-01至2013-12,已结题,主持
代表性论著:
1. X Sheng, D Xiong, S Ying*. Intrinsic semi-parametric regression model on Grassmannian manifolds with applications. Communications in Statistics - Simulation and Computation. 2022. DOI: 10.1080/03610918.2022.2112961
2. D Xiong, S Ying*, H Zhu. Intrinsic partial linear models for manifold-valued data. Information Processing and Management. 59: 102954, 2022. (中科院一区)
3. Y Zhang, S Ji, C Zou, X Zhao, S Ying, Y Gao*. Graph learning on millions of data in seconds: label propagation acceleration on graph using data distribution. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. (中科院一区)
4. S Ji, Z Zhang, S Ying, L Wang, X Zhao, Y Gao*. Kullback-Leibler Divergence Metric Learning. IEEE Transactions on Cybernetics. 52 (4):2047-2058 2022. (中科院一区)
5. Y Li, Z Zhou, S Ying, DeLISA: Deep learning based iteration scheme approximation for solving PDEs. Journal of Computational Physics. 451: 110884, 2022. (中科院一区)
6. S Feng, W Huang, L Song, S Ying*, T Zeng, Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds. Optimization Letters, 16: 2277–2297, 2022.
7. D Jin, M Yang, Z Qin, J Peng, S Ying*, A weighting method for feature dimension by semisupervised learning with entropy. IEEE Transactions on Neural Networks and Learning Systems. 2021. (中科院一区)
8. 应时辉,杨菀,杜少毅,施俊*. 基于深度学习的医学影像配准综述. 模式识别与人工智能. 34(4):287-299, 2021.
9. Z Wen, R Feng, J Liu, Y Li, S Ying*. GCSBA-Net: gabor-based and cascade squeeze bi-attention network for gland segmentation. IEEE Journal of Biomedical and Health Informatics. 25 (4):1185-1196, 2021. (中科院一区)
10. J. Shi, X. Zheng, J. Wu, Q. Zhang, S. Ying*, Quaternion Grassmann average network for learning representation of histopathological image, Pattern Recognition. 89: 67-76, 2019.
11. S. Ying, Z. Wen, J, Shi, Y. Peng*, J. Peng, H. Qiao, Manifold preserving: an intrinsic approach for semi-supervised distance metric learning, IEEE Transactions on Neural Networks and Learning Systems. 29(7): 2731-2742, 2018. (中科院一区)
12. X. Li, Y. Bai, Y. Peng, S. Du, S. Ying*, Nonlinear semi-supervised metric learning via multiple kernel and local topology. International Journal of Neural Systems. 28(2): 1750040, 2018. (中科院一区)
13. J. Shi, X. Zheng, Y. Li, Q. Zhang, S. Ying*, Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics. 22(1): 173-183, 2018. (中科院一区、高被引论文、热点论文)
14. J. Shi, J. Wu, Y. Li, Q. Zhang, S. Ying*, Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE Journal of Biomedical and Health Informatics. 21(5):1327–1337 2017. (中科院一区)
15. S. Ying, G. Wu, Q. Wang, D. Shen, Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set, NeuroImage. 84(1): 626-638, 2014. (中科院一区)
16. S. Ying*, J. Peng, S. Du, H. Qiao. A scale stretch method based on ICP for 3D data registration. IEEE Transactions on Automation Science and Engineering. 6(3): 559-565, 2009.
17. S. Ying, L. Cai, Y. Peng*, Y. Li, Geometric understanding for unsupervised subspace learning, IJCAI. 2019. (CCF A类会议)
18. S. Ying, G. Wu, Q. Wang, D. Shen, Groupwise registration via graph shrinkage on the image manifold, IEEE Conferences on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, USA, June 25-27, 2013. (CCF A类会议)
(最后更新日期:2022.11.2)