王文环
王文环,副教授/古天乐代言太阳集团数学系运筹与优化所副所长,whwang@shu.edu.cn
研究领域:图论及其应用
教育经历:
古天乐代言太阳集团 数学系 运筹学与控制论(图论方向)博士学位
福州大学 数学系 应用数学 (图论方向)硕士学位
华东师范大学 数学系 数学 学士学位
工作经历:
古天乐代言太阳集团数学系 助教 (2003.4–2006.12)、讲师 (2007.1–2012.2)、副教授 (2012.3–今)
香港科技大学数学系 访问学者 (2011.11)
美国圣荷塞州立大学(San José State University)数学系 访问学者 (2013.7–2014.7
代表性科研项目:
国家自然科学基金青年项目“图依能量和依Hosoya 指标的排序”,主持人,2011.1–2013.12.
代表性学术论文:
1. W. H. Wang, “The minimal spectral radius of the r-uniform supertree having two vertices of maximum degree,” Linear and Multilinear Algebra, doi.org/10.1080/03081087.2020.1819188.
2. L. Zhong & W. H. Wang*, “The signless Laplacian coefficients and the incidence energy of graphs with a given bipartition,” Filomat (Accepted).
3. L. Yuan & W. H. Wang*, “Ordering of the unicyclic signed graphs with perfect matchings by their minimal energies,” Filomat, 2020, 34(11): 3721–3745.
4. W. H. Wang* & L. Yuan, “Uniform supertrees with extremal spectral radii,” Frontiers of Mathematics in China, 2020, 15(6): 1211–1229.
5. W. H. Wang* & Y. S. Xue, “On the r-uniform linear hypertrees with extremal Estrada indices,” Applied Mathematics and Computation, 2020, 377: 125144 (11 pages).
6. W. H. Wang* & Y. S. Xue, “Extremal Estrada indices of the weighted trees with fixed total weight sum,” Applied Mathematics and Computation, 2019, 354: 32–41.
7. W. H. Wang*, L. Zhong & L. J. Zheng, “The signless Laplacian coefficients and the incidence energy of the graphs without even cycles,” Linear Algebra and its Applications, 2019, 563: 476–493.
8. W. H. Wang* & L. Zhong, “The signless Laplacian coefficients and the incidence energy of unicyclic graphs with given pendent vertices,” Filomat, 2019, 33(1): 177–192.
9. W. H. Wang* & C. X. Zhai, “Minimal Estrada index of the trees without perfect matchings,” Electronic Journal of Linear Algebra, 2019, 35: 408–417.
10. C. X. Zhai & W. H. Wang*, “Minimal Estrada indices of the trees with a perfect matching,” Electronic Journal of Linear Algebra, 2016, 31: 134–146.
11. W. H. Wang, “Estrada indices of the trees with a perfect matching,” MATCH-Communications in Mathematical and in Computer Chemistry, 2016, 75(2): 373–383.
12. W. H. Wang, “Ordering of oriented unicyclic graphs by skew energies,” Applied Mathematics and Computation, 2016, 284: 136–148.
13. W. H. Wang* & W. So, “On minimum matching energy of graphs,” MATCH-Communications in Mathematical and in Computer Chemistry, 2015, 74(2): 399–410.
14. W. H. Wang & W. So*, “Graph energy change due to any single edge deletion,” Electronic Journal of Linear Algebra, 2015, 29: 59–73.
15. W. So & W. H. Wang*, “Finding the least element of the ordering of graphs with respect to their matching numbers,” MATCH-Communications in Mathematical and in Computer Chemistry, 2015, 73(1): 225–238.
16. W. H. Wang* & W. W. Xu, “Graphs with the maximal Estrada indices,” Linear Algebra and its Applications, 2014, 446: 314–328.
17. W. H. Wang*, “Unicyclic graph with the maximal Estrada indices,” MATCH-Communications in Mathematical and in Computer Chemistry, 2012, 68(3): 939–955.
18. W. H. Wang*, “Minimizing the (2n,q)-graphs with perfect matchings in terms of the Hosoya index,” MATCH-Communications in Mathematical and in Computer Chemistry, 2012, 68(3): 855–870.
19. W. H. Wang*, “Ordering of Hosoya indices for unicyclic Hückel graphs,” Mathematical and Computer Modelling, 2012, 55(3–4): 929–938.
20. W. H. Wang*, “Ordering of unicyclic graphs with perfect matching by minimal energies,” MATCH-Communications in Mathematical and in Computer Chemistry, 2011, 66(3): 927–942.
21. W. H. Wang* & L. Y. Kang, “Ordering of the trees by minimal energies,” Journal of Mathematical Chemistry, 2010, 47(3): 937–958.
22. W. H. Wang* & L. Y. Kang, “Ordering of the trees with a perfect matching by minimal energies,” Linear Algebra and its Applications, 2009, 431(5–7): 946–961.
23. W. H. Wang*, “Ordering of Hückel trees according to minimal energies,” Linear Algebra and its Applications, 2009, 430(2–3): 703–717.
24. W. H. Wang*, A. Chang & D. Q. Lu, “Unicyclic graphs possessing Kekulé structures with minimal energy,” Journal of Mathematical Chemistry, 2007, 42(3): 311–320.
25. W. H. Wang*, A. Chang, L. Z. Zhang & D. Q. Lu, “Unicyclic Hückel molecular graphs with minimal energy,” Journal of Mathematical Chemistry, 2006, 39(1): 231–241.
(最后更新日期:2021.1.23)
王文环
王文环,副教授/古天乐代言太阳集团数学系运筹与优化所副所长,whwang@shu.edu.cn
研究领域:图论及其应用
教育经历:
古天乐代言太阳集团 数学系 运筹学与控制论(图论方向)博士学位
福州大学 数学系 应用数学 (图论方向)硕士学位
华东师范大学 数学系 数学 学士学位
工作经历:
古天乐代言太阳集团数学系 助教 (2003.4–2006.12)、讲师 (2007.1–2012.2)、副教授 (2012.3–今)
香港科技大学数学系 访问学者 (2011.11)
美国圣荷塞州立大学(San José State University)数学系 访问学者 (2013.7–2014.7
代表性科研项目:
国家自然科学基金青年项目“图依能量和依Hosoya 指标的排序”,主持人,2011.1–2013.12.
代表性学术论文:
1. W. H. Wang, “The minimal spectral radius of the r-uniform supertree having two vertices of maximum degree,” Linear and Multilinear Algebra, doi.org/10.1080/03081087.2020.1819188.
2. L. Zhong & W. H. Wang*, “The signless Laplacian coefficients and the incidence energy of graphs with a given bipartition,” Filomat (Accepted).
3. L. Yuan & W. H. Wang*, “Ordering of the unicyclic signed graphs with perfect matchings by their minimal energies,” Filomat, 2020, 34(11): 3721–3745.
4. W. H. Wang* & L. Yuan, “Uniform supertrees with extremal spectral radii,” Frontiers of Mathematics in China, 2020, 15(6): 1211–1229.
5. W. H. Wang* & Y. S. Xue, “On the r-uniform linear hypertrees with extremal Estrada indices,” Applied Mathematics and Computation, 2020, 377: 125144 (11 pages).
6. W. H. Wang* & Y. S. Xue, “Extremal Estrada indices of the weighted trees with fixed total weight sum,” Applied Mathematics and Computation, 2019, 354: 32–41.
7. W. H. Wang*, L. Zhong & L. J. Zheng, “The signless Laplacian coefficients and the incidence energy of the graphs without even cycles,” Linear Algebra and its Applications, 2019, 563: 476–493.
8. W. H. Wang* & L. Zhong, “The signless Laplacian coefficients and the incidence energy of unicyclic graphs with given pendent vertices,” Filomat, 2019, 33(1): 177–192.
9. W. H. Wang* & C. X. Zhai, “Minimal Estrada index of the trees without perfect matchings,” Electronic Journal of Linear Algebra, 2019, 35: 408–417.
10. C. X. Zhai & W. H. Wang*, “Minimal Estrada indices of the trees with a perfect matching,” Electronic Journal of Linear Algebra, 2016, 31: 134–146.
11. W. H. Wang, “Estrada indices of the trees with a perfect matching,” MATCH-Communications in Mathematical and in Computer Chemistry, 2016, 75(2): 373–383.
12. W. H. Wang, “Ordering of oriented unicyclic graphs by skew energies,” Applied Mathematics and Computation, 2016, 284: 136–148.
13. W. H. Wang* & W. So, “On minimum matching energy of graphs,” MATCH-Communications in Mathematical and in Computer Chemistry, 2015, 74(2): 399–410.
14. W. H. Wang & W. So*, “Graph energy change due to any single edge deletion,” Electronic Journal of Linear Algebra, 2015, 29: 59–73.
15. W. So & W. H. Wang*, “Finding the least element of the ordering of graphs with respect to their matching numbers,” MATCH-Communications in Mathematical and in Computer Chemistry, 2015, 73(1): 225–238.
16. W. H. Wang* & W. W. Xu, “Graphs with the maximal Estrada indices,” Linear Algebra and its Applications, 2014, 446: 314–328.
17. W. H. Wang*, “Unicyclic graph with the maximal Estrada indices,” MATCH-Communications in Mathematical and in Computer Chemistry, 2012, 68(3): 939–955.
18. W. H. Wang*, “Minimizing the (2n,q)-graphs with perfect matchings in terms of the Hosoya index,” MATCH-Communications in Mathematical and in Computer Chemistry, 2012, 68(3): 855–870.
19. W. H. Wang*, “Ordering of Hosoya indices for unicyclic Hückel graphs,” Mathematical and Computer Modelling, 2012, 55(3–4): 929–938.
20. W. H. Wang*, “Ordering of unicyclic graphs with perfect matching by minimal energies,” MATCH-Communications in Mathematical and in Computer Chemistry, 2011, 66(3): 927–942.
21. W. H. Wang* & L. Y. Kang, “Ordering of the trees by minimal energies,” Journal of Mathematical Chemistry, 2010, 47(3): 937–958.
22. W. H. Wang* & L. Y. Kang, “Ordering of the trees with a perfect matching by minimal energies,” Linear Algebra and its Applications, 2009, 431(5–7): 946–961.
23. W. H. Wang*, “Ordering of Hückel trees according to minimal energies,” Linear Algebra and its Applications, 2009, 430(2–3): 703–717.
24. W. H. Wang*, A. Chang & D. Q. Lu, “Unicyclic graphs possessing Kekulé structures with minimal energy,” Journal of Mathematical Chemistry, 2007, 42(3): 311–320.
25. W. H. Wang*, A. Chang, L. Z. Zhang & D. Q. Lu, “Unicyclic Hückel molecular graphs with minimal energy,” Journal of Mathematical Chemistry, 2006, 39(1): 231–241.
(最后更新日期:2021.1.23)