何海安
何海安 (Haian HE),副教授
邮箱:haian@shu.edu.cn
研究领域:约化群的表示理论
Homepage (in English): https://orcid.org/0000-0001-6673-6983
教育经历:
上海交通大学 数学与应用数学系 学士学位 (2009)
香港科技大学 数学系 博士学位 (2014)
工作经历:
2014/10 - 2016/11 北京大学北京国际数学研究中心 博士后
2016/12 - 2022/02 古天乐代言太阳集团数学系 讲师
2022/03 - 今 古天乐代言太阳集团数学系 副教授
代表性科研项目:
[1] 克莱因四元对称对的分支问题 国家自然科学基金青年项目 (2019) 主持
[2] 约化Lie群的限制表示的离散分解性 上海市自然科学基金面上项目 (2022) 主持
代表性学术论文:
独立作者:
[1] Haian HE, Branching laws of parabolic Verma modules for non-symmetric polar pairs, Journal of Lie Theory, Volume 24 (2014), Number 4, Page 1047–1066.
[2] Haian HE, On the reducibility of scalar generalized Verma modules of abelian type, Algebras and Representation Theory, Volume 19 (2016), Number 1, Page 147–170.
[3] Haian HE, Classification of Klein four symmetric pairs of holomorphic type for E6(-14), Geometriae Dedicata, Volume 197 (2018), Page 77–89.
[4] Haian HE, Classification of Klein four symmetric pairs of holomorphic type for E7(-25), Geometriae Dedicata, Volume 202 (2019), Page 153–164.
[5] Haian HE, Discretely decomposable restrictions of (ց, K)-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type, International Journal of Mathematics, Volume 31 (2020), Number 1, 2050001 (12 pages).
[6] Haian HE, A criterion for discrete branching laws for Klein four symmetric pairs and its application to E6(-14), International Journal of Mathematics, Volume 31 (2020), Number 6, 2050049 (15 pages).
[7] Haian HE, Kobayashi’s conjecture on associated varieties for Klein four symmetric pairs (E6(-14), Spin(8, 1)), Journal of Lie Theory, Volume 30 (2020), Number 3, Page 705–714.
[8] Haian HE, Discrete decomposability of restrictions of (ց, K)-modules for (G, Gσ) with an automorphism σ of even order, Geometriae Dedicata, Volume 215 (2021), Page 415–419.
[9] Haian HE, A necessary condition for discrete branching laws for Klein four symmetric pairs, Journal of Algebra and Its Applications, Volume 22 (2023), 2350039 (9 pages).
非独立作者:
[1] Haian HE, Toshihisa KUBO, and Roger ZIERAU, On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras, Kyoto Journal of Mathematics, Volume 59 (2019), Number 4, Page 787-813.
[2] Lin-Gen DING, Chao-Ping DONG, and Haian HE, Dirac series for E6(-14), Journal of Algebra, Volume 590 (2022), Page 168-201.
[3] Yilian CHEN and Haian HE, On the discretely decomposable restrictions of (g,K)-modules for Klein four symmetric pairs, International Journal of Mathematics, Volume 33 (2022), Number 14, 2250094 (16 pages).
(最后更新日期:2023.01.02)
何海安
何海安 (Haian HE),副教授
邮箱:haian@shu.edu.cn
研究领域:约化群的表示理论
Homepage (in English): https://orcid.org/0000-0001-6673-6983
教育经历:
上海交通大学 数学与应用数学系 学士学位 (2009)
香港科技大学 数学系 博士学位 (2014)
工作经历:
2014/10 - 2016/11 北京大学北京国际数学研究中心 博士后
2016/12 - 2022/02 古天乐代言太阳集团数学系 讲师
2022/03 - 今 古天乐代言太阳集团数学系 副教授
代表性科研项目:
[1] 克莱因四元对称对的分支问题 国家自然科学基金青年项目 (2019) 主持
[2] 约化Lie群的限制表示的离散分解性 上海市自然科学基金面上项目 (2022) 主持
代表性学术论文:
独立作者:
[1] Haian HE, Branching laws of parabolic Verma modules for non-symmetric polar pairs, Journal of Lie Theory, Volume 24 (2014), Number 4, Page 1047–1066.
[2] Haian HE, On the reducibility of scalar generalized Verma modules of abelian type, Algebras and Representation Theory, Volume 19 (2016), Number 1, Page 147–170.
[3] Haian HE, Classification of Klein four symmetric pairs of holomorphic type for E6(-14), Geometriae Dedicata, Volume 197 (2018), Page 77–89.
[4] Haian HE, Classification of Klein four symmetric pairs of holomorphic type for E7(-25), Geometriae Dedicata, Volume 202 (2019), Page 153–164.
[5] Haian HE, Discretely decomposable restrictions of (ց, K)-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type, International Journal of Mathematics, Volume 31 (2020), Number 1, 2050001 (12 pages).
[6] Haian HE, A criterion for discrete branching laws for Klein four symmetric pairs and its application to E6(-14), International Journal of Mathematics, Volume 31 (2020), Number 6, 2050049 (15 pages).
[7] Haian HE, Kobayashi’s conjecture on associated varieties for Klein four symmetric pairs (E6(-14), Spin(8, 1)), Journal of Lie Theory, Volume 30 (2020), Number 3, Page 705–714.
[8] Haian HE, Discrete decomposability of restrictions of (ց, K)-modules for (G, Gσ) with an automorphism σ of even order, Geometriae Dedicata, Volume 215 (2021), Page 415–419.
[9] Haian HE, A necessary condition for discrete branching laws for Klein four symmetric pairs, Journal of Algebra and Its Applications, Volume 22 (2023), 2350039 (9 pages).
非独立作者:
[1] Haian HE, Toshihisa KUBO, and Roger ZIERAU, On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras, Kyoto Journal of Mathematics, Volume 59 (2019), Number 4, Page 787-813.
[2] Lin-Gen DING, Chao-Ping DONG, and Haian HE, Dirac series for E6(-14), Journal of Algebra, Volume 590 (2022), Page 168-201.
[3] Yilian CHEN and Haian HE, On the discretely decomposable restrictions of (g,K)-modules for Klein four symmetric pairs, International Journal of Mathematics, Volume 33 (2022), Number 14, 2250094 (16 pages).
(最后更新日期:2023.01.02)