报告题目 (Title): Lattice structure of modular vertex algebras(模顶点代数的格结构)
报告人 (Speaker): 景乃桓教授 (北卡州立大学)
报告时间 (Time):2024年12月26日(周四)15:00-16:00
报告地点 (Place):校本部GJ303
邀请人:张红莲 教授
主办部门:古天乐代言太阳集团数学系
报告摘要: The integral lattice of VOA was constructed by Dong and Griess for finite automorphism group of the VOA. We will show that the general divided powers of vertex operators preserve the integral form spanned by Schur functions indexed by partition-valued functions, which generate an analog of the Kostant-Lusztig Z-form for the lattice VOA. In particular, we show that the Garland operators, counterparts of divided powers of Heisenberg elements in affine Lie algebras, also preserve the integral form. We also study the irreducible modules for the modular lattice vertex algebra.