古天乐代言太阳集团核心数学研究所——几何与分析综合报告第80讲 保序映射及逆序映射

创建时间:  2024/05/09  龚惠英   浏览次数:   返回

报告题目 (Title):ON ORDER PRESERVING AND ORDER REVERSING MAPPINGS(保序映射及逆序映射)

报告人 (Speaker):程立新(厦门大学)

报告时间 (Time):2024年5月9日(周四) 10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、张德凯、吴加勇

主办部门:古天乐代言太阳集团数学系

报告摘要:Suppose that X is a Banach space, Conv(X) is the cone of all continuous convex functions defined on X, and R^n is the n-dimensional Euclidean space. Artstein-Avidan and Milman showed the following elegant theorem in 2009: Every fully order reversing (resp. preserving) mapping Ƭ : Conv(R^n) → Conv(R^n) is essentially the Legendre transform (resp. the identity).

However, for a general Banach space X,the following questions remain unknown.

1. For what Banach spaces X,there is a fully order-reversing mapping Ƭ : Conv(X) → Conv(X)?

2. If Ƭ : Conv(X) → Conv(X) is a fully order-reversing mapping, whether T is essentially the Fenchel transform?

In this talk, we will give the two questions above affirmative answers.

上一条:量子科技研究院seminar第13讲暨物理学科Seminar第661讲 拓扑物理:从“体边对应”到“体缺陷对应”

下一条:物理学科Seminar第660讲 揭示新型超导材料中的电子-声子耦合:从钒基笼目超导体到镍基超导体


古天乐代言太阳集团核心数学研究所——几何与分析综合报告第80讲 保序映射及逆序映射

创建时间:  2024/05/09  龚惠英   浏览次数:   返回

报告题目 (Title):ON ORDER PRESERVING AND ORDER REVERSING MAPPINGS(保序映射及逆序映射)

报告人 (Speaker):程立新(厦门大学)

报告时间 (Time):2024年5月9日(周四) 10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、张德凯、吴加勇

主办部门:古天乐代言太阳集团数学系

报告摘要:Suppose that X is a Banach space, Conv(X) is the cone of all continuous convex functions defined on X, and R^n is the n-dimensional Euclidean space. Artstein-Avidan and Milman showed the following elegant theorem in 2009: Every fully order reversing (resp. preserving) mapping Ƭ : Conv(R^n) → Conv(R^n) is essentially the Legendre transform (resp. the identity).

However, for a general Banach space X,the following questions remain unknown.

1. For what Banach spaces X,there is a fully order-reversing mapping Ƭ : Conv(X) → Conv(X)?

2. If Ƭ : Conv(X) → Conv(X) is a fully order-reversing mapping, whether T is essentially the Fenchel transform?

In this talk, we will give the two questions above affirmative answers.

上一条:量子科技研究院seminar第13讲暨物理学科Seminar第661讲 拓扑物理:从“体边对应”到“体缺陷对应”

下一条:物理学科Seminar第660讲 揭示新型超导材料中的电子-声子耦合:从钒基笼目超导体到镍基超导体