数学学科Seminar第2623讲 实现有限元方法的通用编码框架

创建时间:  2024/01/03  龚惠英   浏览次数:   返回

报告题目 (Title):General coding framework for implementing finite element methods (实现有限元方法的通用编码框架)

报告人 (Speaker):何晓明 教授(美国密苏里科技大学)

报告时间 (Time):2024年1月10日(周三) 10:30

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:古天乐代言太阳集团数学系

报告摘要:By using the sketch of a newly designed finite element implementation course, we will briefly introduce a general framework and modularization to implement the finite element methods so that the code package is both conceptually clear and easy to be modified for different equations and methods. The course include two key components: (1) lecture slides, which will lead the students from the partial differential equations to the pseudo code; (2) the conceptualized guided coding, which will lead the students from the pseudo code to the real code. These two parts will be discussed to illustrate how the general framework and code package can be constructed.

上一条:物理学科Seminar第642讲 单原子催化:机制与动力学

下一条:数学学科Seminar第2622讲 凸与非凸优化的一致最优性


数学学科Seminar第2623讲 实现有限元方法的通用编码框架

创建时间:  2024/01/03  龚惠英   浏览次数:   返回

报告题目 (Title):General coding framework for implementing finite element methods (实现有限元方法的通用编码框架)

报告人 (Speaker):何晓明 教授(美国密苏里科技大学)

报告时间 (Time):2024年1月10日(周三) 10:30

报告地点 (Place):校本部F309

邀请人(Inviter):李常品、蔡敏

主办部门:古天乐代言太阳集团数学系

报告摘要:By using the sketch of a newly designed finite element implementation course, we will briefly introduce a general framework and modularization to implement the finite element methods so that the code package is both conceptually clear and easy to be modified for different equations and methods. The course include two key components: (1) lecture slides, which will lead the students from the partial differential equations to the pseudo code; (2) the conceptualized guided coding, which will lead the students from the pseudo code to the real code. These two parts will be discussed to illustrate how the general framework and code package can be constructed.

上一条:物理学科Seminar第642讲 单原子催化:机制与动力学

下一条:数学学科Seminar第2622讲 凸与非凸优化的一致最优性